
Trace-Diagnostic for Signal 
Temporal Properties:

an Evolutionary Approach
Author: Gabriel F P Araujo

Supervisor: Profa. Genaina Rodrigues

Ricardo Caldas and prof. Claudio Menghi and prof. Patrizio Pelliccione



Story time!

2

● Autonomous forklift fault while 
picking a pallet.

● We corrected a bug but we 
forgot to fix one of the 
parameters



Testing autonomous systems

3

● Testing robots is expensive
○ Takes time
○ Dangerous
○ Lots of modules to debug

● We need a smart way to test 
and find problems:

○ Unit tests
○ Integration tests
○ Hardware testing
○ Hardware in the loop



So…

● How do we know that the robots are working?
● How do we know that any change in the codebase will not break other 

features?
● Are the parameters right?
● Does the different modules work together?

4



“In the beginning…”

As engineers, we can always:

● Test system
● Record data
● Analyse data

To diagnose Any system

5



Trace-checking

● Engineers record and analyse a system traces to check whether they obey 
the system’s requirements

● We can automate the checking using a tool, a trace-checking tool
● For each property the trace-checking tool outputs a verdict (property satisfied 

or unsatisfied)

6



Our Approach



To specify properties: HLS (Hybrid Logic of Signals)

8

● Extends existing specification languages
○ Time-based languages (e.g. STL) and 
○ Sequence-based languages (e.g. LTL)

● Target Cyber-Physical Systems
● Design goals

○ Timestamp variables
○ Index variables
○ Real-valued variables

● ThEodorE is the trace-checker for HLS properties

[1] Menghi, C., Vigano, E., Bianculli, D., & Briand, L. C. (2021). Trace-checking CPS properties: Bridging the cyber-physical gap. Proceedings - 
International Conference on Software Engineering, 847–859. https://doi.org/10.1109/ICSE43902.2021.00082



Genetic programming

● Search algorithm based on natural selection
● The genetic algorithm repeatedly modifies a population of individuals
● Used to expand the search space

9



● Supervised learning algorithm
● Used to classify GA’s mutated properties
● To find the root cause in the property

Decision Trees



Our Approach



Running example: Autonomous car

12



Running example: Requirement

“The car has to follow the desired position in x axis with 20 cm tolerance and its 
distance to an obstacle must be greater than 45 cm”

13



Running example: Run (failure)



Our Approach



Generator of mutations

● Based-on genetic programming
● Creates several versions of the formula changing the terms

16



Trace Checker

● For each generated formula, we check them using ThEodorE

[1] Menghi, C., Vigano, E., Bianculli, D., & Briand, L. C. (2021). Trace-checking CPS properties: Bridging the cyber-physical gap. Proceedings - 
International Conference on Software Engineering, 847–859. https://doi.org/10.1109/ICSE43902.2021.00082 17

True

False



Diagnostic Generator

18

After, we run a lot of new 
formulas (>1000), we 
choose the best ones 
based on how distant they 
are from the original 
formula.



DG: Ranking mutated properties

19

We use the Smith-Waterman algorithm to calculate the similarity between two 
formulas.

MATCH = 3
MISMATCH = -3



Diagnostic Generator

We label the terms in the formula:

20

Quantifier_1

Relational_1

Relational_2

Number_2

Number_1



Diagnostic Generator

● Use J48 from WEKA to learn which 
terms change when verdict also 
changes

○ Unsupervised learning
○ Output a decision tree
○ Extract which terms on the formula are 

most relevant

21



Diagnostic Generator

22

We label the terms in the formula:

Quantifier_1

Relational_1

Relational_2

Number_2

Number_1



Running example

23



Related work

24



Conclusions and what is next?

● We achieved so far:
○ Definition of the problem
○ Running example
○ Approach working

● Running the experiments for the evaluation.

25



Thank you

26


