“It is not sufficient to engineer
a solution.

The engineering team must make sure

that it is the correct solution.”
Rodrigues, G.

make sure
that it is the correct solution

How can

The engineering team make sure
that it is ®

1) By design

2) Testing and Verification

2) Testing and Verification

Guidelines for
Testing and Verifying robots
NRUERIE[

P RN

S AN) WALLENBERG Al,
(A CHALMERS \/\//\S p | AUTONOMOUS SYSTEMS
BImvd’ UNIVERSITY OF TECHNOLOGY AND SOFTWARE PROGRAM

Brasilia, Brasil, Feb. 2024

About me Ny

e Control and Automation Engineer (UnB, Brazil)
e Masters in Dependability and SE (UnB, Brazil)
e PhD student, Robotics SE (Chalmers, Sweden)

SENLTIHES IR
MR ROCONTROLATOR

¢ On what software engineering activities do
roboticists spend most of their time?

156 respondents

Real-world experimentation
Testing and simulation |

0
Maintenance/evolution | 8%
Architectural/detailed design | 9%
Requirements engineering 21%
Other i50%

Automatic code generation 61%

100 50 0 50 100

Percentage of responses

Practitioners mainly focus on implementation and
real-world experimentation (preferred over simulation)
during software development, typically following agile-
style processes.

IT IS UNCLEAR HOW ::: ROS SUPPORTS SYSTEMATIC

RUNTIME VERIFICATION AND FIELD-BASED TESTING.

How does

11

2nd cycle 15t cycle

3rd cycle

:22ROS supports RV and FbT?
Awareness Solution Validation
Terminology Internal peer
Surveys —> andsearch p———> revieti
strings
v
Systematic Template and Survey with 3
literature sketch of external
review guidelines experts
v

Specific search
and repository
mining

Clustered
guidelines with
exemplars

Online survey
and follow-up

Overview of the guidelines to
Field-based Testing (FT

https://ros-rvft.github.io/

20 guidelines | 8 clusters | 8 for Devs + 12 for RV and FT

Preparing for Field-based Testing
& Runtime Verification of ROS-
based systems

B

DEVELOPERS

Field-based Testing & Runtime Verification of ROS-based systems

i

QA TEAM

Constraint Identification

_|

I_

_|

Cl1. Identify timing
constraints

Cl2. Identify security and
privacy constraints

CI3. Identify safety
constraints

PE1. Understand the overhead
acceptance criteria

Code design and impl.

— Specify (un)desired behavior |—
SDB1. Specify properties SDB2. Use domain specific SDBS3. Use languages and
using logic-based languages (DSLs) to specify tools to scenario-based
language. properties specification of test cases
Prepare execution environment for FT&RV - Generate monitors & -
test cases
PE2. Create models for runtime
assessment GMTC1. Improve the robustness
of the system by performing noise
and fault injection
/4

for FT&RV

Instrumentation for FT&RV h A

11. Provide an API for

System execution for FT&RV [

CD2. Ensure global time

monotonicity of events
and states

13. Provide an API for
injecting faults in execution
scenarios

v

querying and updating
CD1. Strive for ROS nodes internal lifecycle
with single responsibility 7
/4 .
12. Provide an API for 14. Isolate components
logging and filtering for testing
7

SE2. No GUIs!
SE1. Use record-and- Prioritige >
replay when performing headless
exploratory field tests. simulation

GMTC2. Exploit automation for
test case generation, prioritization,
selection and oracle generation

Analysis and Reporting

|_

AR1. Perform postmortem analysis
to diagnose non-passing test cases

AR2. Use reliable tooling to manage
field data

)

CD2. Ensure global time monotonicity of events and states

Non-determinism in the scheduling of events can lead to unexpected behavior, compromising the reliability of tests and hindering

their reproduction.

“The development team should ensure global

time monotonicity of events and states to avoid

potential scheduling non-determinism”

PROCESS:

Ensuring global time monotonicity of
events and states permits to address the

potential non-determinism in the

scheduling of events in ROS-based
applications

Understand how / Scheduling L / L Time synchronizers
= L | Analyze ordering in o Formal analyzes of .| Guarantee ordering in o .
events/states are > definitions and > . > . . . > and messages with
. the execution execution ordering the execution .
scheduled algorithms - timestamps ~
- ~ - S~ P ~ ~
- - ~ ~ — - ~ - - - ~ -
_ - ~o - ~ o . ~

Examples of scheduling in ROS 2

“ROS 2 schedules callbacks using a non-
preemptive algorithm that consumes messages
depending on their type. Unlike typical real-time
priority-based scheduling algorithms, ROS 2
does not execute callbacks in their activation
instances. Thus, non-time-based messages are
scheduled in a round-robin fashion ” Chaaban,
K. in A New Algorithm for Real-Time
Scheduling and Resource Mapping for Robot
Operating Systems (ROS). Applied Sciences
13.3 (2023)

2
b https://github.com/rtenlab/ros2-

picas

Choi, H., et al. "PiCAS: New design of priority-driven
chain-aware scheduling for ROS2." RTAS. |IEEE,

RR-only (wcet)
- == BW-only (wcet)
= = baseline

IS

-
-
-
-
-
-
-

w
Y

—
-
-
-

RT Bound (ms)
~
A

N
\
t
1
1

getFront(Q.

spinOnce
CBQ — callAvailable() @—»{ [Qac1]

(&, Qe

addRea

Examples of ordering analyzes on ROS applications

BlaB, T., et al. "A
ROS 2 response-time
analysis exploiting
starvation freedom
and execution-time
variance." RTSS.
IEEE, 2021.

Halder, R., et al. "Formal
verification of ROS-
based robotic
applications using timed-
automata." FormaliSE.
IEEE, 2017.

Example of message with timestamps

Annotate ROS messages with timestamps for
instance the MAVLink time synchronizer

Status of the MAVLink time synchronizer

std_msgs/Header header

uint64 remote_timestamp_ns
int64 observed_offset_ns
int64 estimated_offset_ns
float32 round_trip_time_ms

https://github.com/mavlink/mavros/blob/ros2/m
avros_msgs/msg/TimesyncStatus.msg

https://github.com/mavlink/mavros/blob/ros2/mavros_msgs/msg/TimesyncStatus.msg
https://github.com/mavlink/mavros/blob/ros2/mavros_msgs/msg/TimesyncStatus.msg
https://github.com/mavlink/mavros/blob/ros2/mavros_msgs/msg/TimesyncStatus.msg
https://github.com/rtenlab/ros2-picas
https://github.com/rtenlab/ros2-picas
https://github.com/rtenlab/ros2-picas

|1. Provide an API for querying and updating internal lifecycle

10,04

A
‘

In ROS, internal states are typically hidden limiting the ability to diagnose and understand unpredicted behavior.

“To facilitate field-based testing, the

development team should adopt custom lifecycle
conventions and prepare an APl for querying and

updating the internal life-cycle.”

Define a custom

PROCESS:

\ 4

ROS nodes with lifecycle management

provide:

(1). structured way to manage nodes and
interactions;

(2). ensuring the right state for testing;

(3). helps mitigate dangling nodes that are
not in use;

E—— Custom lifecycle

—

-
- -~

- ~—
— -~
- -~
— - ~—
- -~
— —
- -~
- —

— —

management

Build API /
> for lifecycle > API

e
- -
- -
e
- -
e

—-— -

-
— -

-
~—
-~
-~
~—
-
~—
—
-
-~

https://qgithub.com/micro-
ROS/system modes!/.../

https://github.com/micro- 39 drive_base:

ROS/system modes/.../ 40 ros__parameters:

41 type: node

42 modes:

43 _ DEFAULT__:

44 ros__parameters:
45 max_speed: 0.1
46 controller: PID
47 SLOW:

48 ros__parameters:
49 max_speed: 0.2
50 controller: PID
51 FAST:

52 ros__parameters:
53 max_speed: 0.9
54 max_torque: MPC

Examples on defining a custom lifecycle

39 manipulator:

40 ros__parameters:

41 type: node

42 modes:

43 _ DEFAULT_:

44 ros__parameters:

45 max_torque: 0.1
46 WEAK:

47 ros__parameters:
48 max_torque: 0.1
49 STRONG:

50 ros__parameters:
51 max_torque: 0.2

Example on Lifecycle Management

| Deliberation

-
states, diagnostics, parameters pubfsub, actions, services |

|

</ \

[/motion: Jdiff-drive-
Nordmann, A., et al. “System modes-digestible
system

(re-) configuration for robotics.” 2021 IEEE/ACM 3rd
RoSE.

‘ System Modes

39 // Manipulator node with two non-default
modes: weak and strong
class Manipulator : public LifecycleNode

40
41
42
43
44

https://qithub.com/micro-

ROS/system modes/.../system modes exampl

es/manipulator.cpp

Manipulator()
: LifecycleNode(“manipulator”)

https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/example_modes.yaml
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/example_modes.yaml
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/example_modes.yaml
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/example_modes.yaml
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/src/manipulator.cpp
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/src/manipulator.cpp
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/src/manipulator.cpp
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/src/manipulator.cpp
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/example_modes.yaml
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/example_modes.yaml
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/example_modes.yaml
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/example_modes.yaml
https://emojipedia.org/nerd-face/

cool, but so what?

are these guidelines
useful, clear, applicable?

How do developers and QA teams like our guidelines?

- 55 responses (Industry and Academics)
- Service robotics, marine robotics and industrial automatio

-22% (1 -3 yrs), 22% (3 - 5 yrs) and 40% (> 1Q

Usefulness
Cl1 | 4% 0%] 569
Cl2 | 7% 0% 339y
Cl3 | 4% 0% [599
CD1 | 4% 0% . 59%
CD2 | 7% 0% I 56%
11 11% 0% |] 489
12 | 0% 0% I 56%
13 | 4%] 0% 419
14 | 0% || 0% B 30%
SDB1 11% | 0% M 199
SDB2 | 7% ¢] 0% M 269
SDB3 | 4% 11% | 0% N 229
GMTC1 | 4% GMTC1 | 0% |] 339 GMTC1 | 7% 0% 269
GMTC2 | 7% GMTC2 | 4% 0% M 309 GMTC2 15% 0% ™ 199
PE1 | 0% PE1 | 0% 7 339% PE1 | 7% 0% 269
PE2 | 4% PE2 11% 0% M 229 PE2 22% 0% 119
SE1 | 0% e SE1 | 0% 0& || 339% SE1 | 4% 0% | 309
SE2 | 7% 0% SE2 | 0% 0 |] 339 SE2 | 0% o BN 339%
AR1 | 0% 0 AR1 | 4% 0% 30% AR1 | % 0% 269%
AR2 | 0% 0 AR2 | 0% ope [| 339 AR2 11% 0% 229
100 50 0 50 100 100 50 0 50 100 100 50 0 50 100

Response Fully disagree Disagree Agree . Fully agree

Future Work (under construction...)

* Guidelines that never made it to the end

“Explicitly annotate ROS nodes with contracts”
“Use Closed-Form Expressions for Recording Time-Continuous Traces”

« How do guidelines address the state-of-the-art
of field-based testing and runtime verification?

Open Challenge Guidelines FT or RV?
Lack of (Formal) Specifications [33] SDB1, SDB2, SDB3, PE2 FT
Generating and implementing field test cases [33] — “uncertainty” T2 FT
Isolation Strategies [33] — “difficult or expensive to apply” S1,T5 FT
Oracle Definition [33] — “adapt oracle to unknown; precision and accuracy of oracle” T2 FT
Security and Privacy [33], [132] — “testing infra may be used to exploit sec. and priv.” ;F RV&FT
Orchestrating and Governing Test Cases [33] — “rules and policies to conduct tests” - FT
Distributed monitoring [28], [132] -19 RV
Monitoring states [28] — “only a few tools monitor states in comparison to events” RV
Richer reactions [28] — “tools focus on passive reaction (statistics)” P3, T5 RV
Support to imprecise traces [28] — “support imprecision in input traces” T3 (?) RV

18
ST Gn———————————mmmm—mmmmmm——,—mm»m

Take aways

8¢ Real-world Testing and Verification
help to engineer the correct solution;

® ROS does not provide extensive support
to real-world testing; 2) Testing and Verification @3
& Mixed-methods (SLR + repo mining) are
a way to provide actionable results.

[1. Provide an API for querying and updating internal lifecycle @
{ On What SOftwa re engineering actiVitieS do In ROS, internal states are typically hidden limiting the ability to diagnose and understand unpredicted behavior. _
roboticists spend most of their time? “To facilitate field-based testing, the K0S nodes wth syl mengomen
156 respondents development te;rn should adopt custom hfecycfz fileiiii.ifﬁ?d way to manage nodes and
' conventions and prepare an API for querying an . ensuring the right state for testing;
(a) |mL|ement§ti0n 0% 1% 99% . . prep . ,,f q ying g; helps ma?titgateia‘;\gtlintg nod:as :hagt are
Real-world experimentation = 1% 11% 88% updating the internal life-cycle. notin use;
Testing and simulation | 4% 17% 79% |
Project management | 9% 22% 69% st)
Maintenance/evolution ' 8% 24% 68% h TTTeeee
Architectural/detailed design | 9% 31% 60% 0
Requirements engineering 21% 31% 49% a
Other 50% 20% 30% =
Automatic code generation 61% 24% 15% «
100 50 0 50 100 “
Percentage of responses =
8 si

https://emojipedia.org/nerd-face/

Thanks!

S : CHALMERS \/\//\S p | AUTONDNOLS SisTEMS
% >4 UNIVERSITY OF TECHNOLOGY AND SOFTWARE PROGRAM

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Guidelines for�Testing and Verifying robots in the field
	About me
	🔥 On what software engineering activities do roboticists spend most of their time?
	Slide Number 9
	Slide Number 10
	How does supports RV and FbT?
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	How do developers and QA teams like our guidelines?
	Future Work (under construction…)
	Take aways��👀 Real-world Testing and Verification help to engineer the correct solution;�🔥 ROS does not provide extensive support to real-world testing;�🤓 Mixed-methods (SLR + repo mining) are a way to provide actionable results.�
	Thanks!

