
“It is not sufficient to engineer
a solution.

The engineering team must make sure
that it is the correct solution.”
Rodrigues, G.

“It is not sufficient to engineer
a solution.

The engineering team must make sure
that it is the correct solution.”

The engineering team must make sure
that it is the correct solution

How can

1)

2)

By design

Testing and Verification

1)

2)

By design

Testing and Verification

Guidelines for
Testing and Verifying robots
in the field

Ricardo D. Caldas
Brasília, Brasil, Feb. 2024

About me
● Control and Automation Engineer (UnB, Brazil)
● Masters in Dependability and SE (UnB, Brazil)
● PhD student, Robotics SE (Chalmers, Sweden)

7

2014

8

156 respondents

On what software engineering activities do
roboticists spend most of their time?

9

Practitioners mainly focus on implementation and
real-world experimentation (preferred over simulation)
during software development, typically following agile-
style processes.

10

IT IS UNCLEAR HOW SUPPORTS SYSTEMATIC
RUNTIME VERIFICATION AND FIELD-BASED TESTING.

How does supports RV and FbT?

11

Code design and impl.
for FT&RV

CD1. Strive for ROS nodes
with single responsibility

CD2. Ensure global time
monotonicity of events
and states

Prepare execution environment for FT&RV

PE1. Understand the overhead
acceptance criteria

PE2. Create models for runtime
assessment

Instrumentation for FT&RV

I1. Provide an API for
querying and updating
internal lifecycle

I2. Provide an API for
logging and filtering

I3. Provide an API for
injecting faults in execution
scenarios

I4. Isolate components
for testing

Specify (un)desired behavior

SDB3. Use languages and
tools to scenario-based
specification of test cases

SDB2. Use domain specific
languages (DSLs) to specify
properties

SDB1. Specify properties
using logic-based
language.

GMTC1. Improve the robustness
of the system by performing noise
and fault injection

GMTC2. Exploit automation for
test case generation, prioritization,
selection and oracle generation

Generate monitors &
test cases

System execution for FT&RV

SE2. No GUIs!
Prioritize
headless
simulation

SE1. Use record-and-
replay when performing
exploratory field tests.

Analysis and Reporting

AR1. Perform postmortem analysis
to diagnose non-passing test cases

AR2. Use reliable tooling to manage
field data

CI1. Identify timing
constraints

CI2. Identify security and
privacy constraints

CI3. Identify safety
constraints

Constraint Identification

DEVELOPERS QA TEAM

Legend

Activity Guideline

Preparing for Field-based Testing
& Runtime Verification of ROS-
based systems

Field-based Testing & Runtime Verification of ROS-based systems

Overview of the guidelines to
Field-based Testing (FT) and Runtime Verification (RV) for ROS-based Systems

Contact: Ricardo Caldas <ricardo.caldas@chalmers.se>

Role

https://ros-rvft.github.io/

Code design and impl.
for FT&RV

Prepare execution environment for FT&RV

Instrumentation for FT&RV

Specify (un)desired behavior

Generate monitors &
test cases

System execution for FT&RV

Analysis and Reporting

Constraint Identification

DEVELOPERS QA TEAM

Preparing for Field-based Testing
& Runtime Verification of ROS-
based systems

Field-based Testing & Runtime Verification of ROS-based systems

20 guidelines

Contact: Ricardo Caldas <ricardo.caldas@chalmers.se>

Legend

Activity Guideline Role

20 guidelines | 8 clusters

CI1. Identify timing
constraints

CI2. Identify security and
privacy constraints

CI3. Identify safety
constraints

CD1. Strive for ROS nodes
with single responsibility

CD2. Ensure global time
monotonicity of events
and states

I1. Provide an API for
querying and updating
internal lifecycle

I2. Provide an API for
logging and filtering

I3. Provide an API for
injecting faults in execution
scenarios

I4. Isolate components
for testing

PE1. Understand the overhead
acceptance criteria

PE2. Create models for runtime
assessment

SDB3. Use languages and
tools to scenario-based
specification of test cases

SDB2. Use domain specific
languages (DSLs) to specify
properties

SDB1. Specify properties
using logic-based
language.

GMTC1. Improve the robustness
of the system by performing noise
and fault injection

GMTC2. Exploit automation for
test case generation, prioritization,
selection and oracle generation

SE2. No GUIs!
Prioritize
headless
simulation

SE1. Use record-and-
replay when performing
exploratory field tests.

AR1. Perform postmortem analysis
to diagnose non-passing test cases

AR2. Use reliable tooling to manage
field data

20 guidelines | 8 clusters | 8 for Devs + 12 for RV and FT

CD2. Ensure global time monotonicity of events and states
Non-determinism in the scheduling of events can lead to unexpected behavior, compromising the reliability of tests and hindering
their reproduction.

Ensuring global time monotonicity of
events and states permits to address the
potential non-determinism in the
scheduling of events in ROS-based
applications

“The development team should ensure global
time monotonicity of events and states to avoid
potential scheduling non-determinism”

PROCESS:
Understand how
events/states are

scheduled

Analyze ordering in
the execution

Scheduling
definitions and

algorithms

Formal analyzes of
execution ordering

Examples of ordering analyzes on ROS applicationsExamples of scheduling in ROS 2

Guarantee ordering in
the execution

Time synchronizers
and messages with

timestamps

Example of message with timestamps

https://github.com/mavlink/mavros/blob/ros2/m
avros_msgs/msg/TimesyncStatus.msg

1 # Status of the MAVLink time synchronizer
2
3 std_msgs/Header header
4 uint64 remote_timestamp_ns
5 int64 observed_offset_ns
6 int64 estimated_offset_ns
7 float32 round_trip_time_ms

“ROS 2 schedules callbacks using a non-
preemptive algorithm that consumes messages
depending on their type. Unlike typical real-time
priority-based scheduling algorithms, ROS 2
does not execute callbacks in their activation
instances. Thus, non-time-based messages are
scheduled in a round-robin fashion ” Chaaban,
K. in A New Algorithm for Real-Time
Scheduling and Resource Mapping for Robot
Operating Systems (ROS). Applied Sciences
13.3 (2023)

https://github.com/rtenlab/ros2-
picas

Choi, H., et al. "PiCAS: New design of priority-driven
chain-aware scheduling for ROS2." RTAS. IEEE,
2021.

Halder, R., et al. "Formal
verification of ROS-
based robotic
applications using timed-
automata." FormaliSE.
IEEE, 2017.

Blaß, T., et al. "A
ROS 2 response-time
analysis exploiting
starvation freedom
and execution-time
variance." RTSS.
IEEE, 2021.

Annotate ROS messages with timestamps for
instance the MAVLink time synchronizer
module.

https://github.com/mavlink/mavros/blob/ros2/mavros_msgs/msg/TimesyncStatus.msg
https://github.com/mavlink/mavros/blob/ros2/mavros_msgs/msg/TimesyncStatus.msg
https://github.com/mavlink/mavros/blob/ros2/mavros_msgs/msg/TimesyncStatus.msg
https://github.com/rtenlab/ros2-picas
https://github.com/rtenlab/ros2-picas
https://github.com/rtenlab/ros2-picas

I1. Provide an API for querying and updating internal lifecycle
In ROS, internal states are typically hidden limiting the ability to diagnose and understand unpredicted behavior.

ROS nodes with lifecycle management
provide:
(1). structured way to manage nodes and
interactions;
(2). ensuring the right state for testing;
(3). helps mitigate dangling nodes that are
not in use;

“To facilitate field-based testing, the
development team should adopt custom lifecycle
conventions and prepare an API for querying and
updating the internal life-cycle.”

PROCESS: Define a custom
lifecycle

Build API
for lifecycle

management
Custom lifecycle API

Examples on defining a custom lifecycle Example on Lifecycle Management
https://github.com/micro-
ROS/system_modes/.../
system_modes_examples/example_modes.ya
ml39 manipulator:

40 ros__parameters:
41 type: node
42 modes:
43 __DEFAULT__:
44 ros__parameters:
45 max_torque: 0.1
46 WEAK:
47 ros__parameters:
48 max_torque: 0.1
49 STRONG:
50 ros__parameters:
51 max_torque: 0.2

Nordmann, A., et al. “System modes-digestible
system
(re-) configuration for robotics.” 2021 IEEE/ACM 3rd

RoSE.

https://github.com/micro-
ROS/system_modes/.../system_modes_exampl
es/manipulator.cpp

https://github.com/micro-
ROS/system_modes/.../
system_modes_examples/example_modes.ya
ml

39 drive_base:
40 ros__parameters:
41 type: node
42 modes:
43 __DEFAULT__:
44 ros__parameters:
45 max_speed: 0.1
46 controller: PID
47 SLOW:
48 ros__parameters:
49 max_speed: 0.2
50 controller: PID
51 FAST:
52 ros__parameters:
53 max_speed: 0.9
54 max_torque: MPC

39 // Manipulator node with two non-default
modes: weak and strong
40 class Manipulator : public LifecycleNode
41 {
42 public:
43 Manipulator()
44 : LifecycleNode(“manipulator”)
45 { … }
46 }

https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/example_modes.yaml
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/example_modes.yaml
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/example_modes.yaml
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/example_modes.yaml
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/src/manipulator.cpp
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/src/manipulator.cpp
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/src/manipulator.cpp
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/src/manipulator.cpp
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/example_modes.yaml
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/example_modes.yaml
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/example_modes.yaml
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/example_modes.yaml
https://emojipedia.org/nerd-face/

cool, but so what?

are these guidelines
useful, clear, applicable?

How do developers and QA teams like our guidelines?

Usefulness Clarity Applicability

- 55 responses (Industry and Academics)
- Service robotics, marine robotics and industrial automation
- 22% (1 – 3 yrs), 22% (3 – 5 yrs) and 40% (> 10 yrs)

17

18

• Guidelines that never made it to the end
“Explicitly annotate ROS nodes with contracts”
“Use Closed-Form Expressions for Recording Time-Continuous Traces”

• How do guidelines address the state-of-the-art
of field-based testing and runtime verification?

Future Work (under construction…)

Take aways

Real-world Testing and Verification
help to engineer the correct solution;

ROS does not provide extensive support
to real-world testing;

Mixed-methods (SLR + repo mining) are
a way to provide actionable results.

19

https://emojipedia.org/nerd-face/

Thanks!
ricardo.caldas@chalmers.se
https://rdinizcal.github.io

Check the guidelines :

https://ros-rvft.github.io/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Guidelines for�Testing and Verifying robots in the field
	About me
	🔥 On what software engineering activities do roboticists spend most of their time?
	Slide Number 9
	Slide Number 10
	How does supports RV and FbT?
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	How do developers and QA teams like our guidelines?
	Future Work (under construction…)
	Take aways��👀 Real-world Testing and Verification help to engineer the correct solution;�🔥 ROS does not provide extensive support to real-world testing;�🤓 Mixed-methods (SLR + repo mining) are a way to provide actionable results.�
	Thanks!

