RoME 2024

Exploiting modular game representation for GR(1) synthesis

Hernán Gabriel Gagliardi

PhD Advisor: Sebastian Uchitel

Feb 22nd, 2024

First .. introducing myself

Currently ..

- PhD student in Computer Science at UBA (LaFHIS).
- Teaching assistant at **Operating Systems**.

Introducing my cat room partners

I live in Buenos Aires with Betún, Clementina, Rita and Santos.

Clementina because...

Clementina was also the name of the first computer in my faculty and in my country.

Research interests

- Formal specification languages
- Controller synthesis techniques applied to adaptive systems.

Previous and ongoing projects:

- Improve existing heuristics for *on-the-fly controller synthesis* in non-blocking control problems. (MSc Thesis).
- Studying equivalence and translation between state-based and event-based control problems.
- Working on **dynamic-update problem for GR(1) contextual missions** (L'Aquila collaboration)
- Extending the on-the-fly synthesis controller algorithm for GR(1) control problem. (Work in progress)

Research interests

- Formal specification languages
- **Controller synthesis techniques** applied to adaptive systems.

Previous and ongoing projects:

- Improve existing heuristics for *on-the-fly controller synthesis* in non-blocking control problems. (MSc Thesis).
- Studying equivalence and translation between state-based and event-based control problems.
- Working on **dynamic-update problem for GR(1) contextual missions** (GSSI collaboration)
- Extending the on-the-fly synthesis controller algorithm for GR(1) control problem. (Work in progress)

Exploding modular representation GR(1) Control problem - Background

Input

- *Event-based* environment-system with LTS's representation with **modular approach**.
- **GR(1)** control problem Goal.

$$\varphi = \bigwedge_{i=1}^m \square \diamondsuit J_i^1 \to \bigwedge_{j=1}^n \square \diamondsuit J_j^2$$

GR(1) Control problem - Background

Input

- *Event-based* environment-system with LTS's representation with **modular approach**.
- **GR(1)** control problem Goal.

Output

Correct-by-construction controller guaranteeing goal objective (if exists strategy).

State-explosion problem

We want to avoid **state-explosion problem** of Monolithic approach.

Exploding modular representation Compositional approach

Key idea: Compose and reduce input processes.

Exploding modular representation Compositional approach

Key idea: Compose and reduce input processes **with effective techniques** and **without sacrificing synthesis correctness**.

Exploding modular representation Compositional approach

Key idea: Compose and reduce input processes **with effective techniques** and **without sacrificing synthesis correctness**.

¿Which techniques are these?

Compositional approach - Local synthesis

Key idea: Solve the synthesis problem for a subset of processes.

Compositional approach - Local synthesis

Key idea: Solve the synthesis problem for a subset of processes.

Input:

$$\varphi = \bigwedge_{i=1}^m \, \square \, \diamondsuit \, J_i^1 \to \bigwedge_{j=1}^n \, \square \, \diamondsuit \, J_j^2$$

Compositional approach - Local synthesis

Key idea: Solve the synthesis problem for a subset of processes.

Input:

Synthesis

Output

$$\varphi = \bigwedge_{i=1}^{m} \square \diamondsuit J_{i}^{1} \to \bigwedge_{j=1}^{n} \square \diamondsuit J_{j}^{2}$$

Compositional approach - Reducing states by local-events equivalence

Key idea: Combine similar processes and reduce the composition using local-event based equivalence.

Compositional approach - Reducing states by local-events equivalence

Key idea: Combine **similar processes** and reduce the composition using **local-event** based equivalence.

Compositional approach - Reducing states by local-events equivalence

Key idea: Combine **similar processes** and reduce the composition using **local-event** based equivalence.

Summary and ongoing work

- We are designing a general framework to exploit modular representation.
- We expect this approach lead us to solve bigger controller synthesis instances.
- Finishing implementation and formal demonstration about correctness.

Summary and ongoing work

- We are designing a general framework to exploit modular representation.
- We expect this approach lead us to solve bigger controller synthesis instances.
- Finishing implementation and formal demonstration about correctness.

Questions?

hg.gagliardi@gmail.com